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Abstract

In this paper we extend the usual hierarchies for the finite, nonperiodic Toda lattice for negative
values of the index. We define an infinite sequence of rational homogeneous Poisson brackets, master
symmetries, invariants and investigate the various relationships between them. All the relations
between master symmetries, Poisson tensors and invariants which hold over the positive integers
are extended for all integer values. We comment on extensions to other versions of the Toda lattice,
i.e. the periodic, infinite and Bogoyavlensky—Toda type systems.
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1. Introduction

The Toda lattice is a Hamiltonian system with Hamiltonian function
N 1 N-1
H(ql,.--,CIN,pl,--~,PN)=Z§P,-2+ Y el 1)
i=1 i=1

The functiong (¢) is the position of thg'th particle andp; () the corresponding momen-
tum. This is the classical, finite, nonperiodic Toda lattice. This system was investigated in
[11,12,15,21,24,25,34]
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Hamilton’s equations become
qj =pj, pj — e1j-1749j _ gfj—4j+1,

This system is integrable. One can find a set of independent funéttins. ., Hy} which
are constants of motion for Hamilton’s equations. To determine the constants of motion,
one uses Flaschka's transformation:

a; = %el/z(fh’—qi-%—l)’ b = —%PL )
Then

. o2 2

a; = ai(biy1 — b;), bi = 2(a; —a;i_;).

These equations can be written as a Lax pai [B, L], whereL is the Jacobi matrix

bl ai 0 RN A 0
a1 by a»
[ 0 ax b3
anN-1
0 an-1 by
and
0 ai 0 0
—a; O ar
B 0 —a O
an-1
0 e —an_1 0

This is an example of an isospectral deformation; the entrids \@dry over time but the
eigenvalues remain constant. It follows that the functiffps= (1/i) tr L' are constants of
motion. We note that

N

1
Hi=) bi=—5(p1+pa+--+pn)
i=1

and

1 N N-1
2 2 E: 2
H2=H(Ql""qu’plvu-’pN):E‘ 1bi+- 1“:"
i= =
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ConsideiR?" with coordinatesgz, ..., gn, p1. ..., pn), the standard symplectic bracket
N
of 0g of 0g
{f.gls = (—— — o a 3
U Z dqi Opi  pi 9q; ®)

i—1
and the mapping : R?¥ — R?¥~1 defined by

F:(q,....,qn,p1,...,pN) — (a1,...,an-1,D1, ..., DN).

Define a bracket oR2VN 1 by

{f.g}={foF,goFl.
The result is a bracket which (up to a constant multiple) is given by
{ai, bi} = —a;, {ai, biy1} = a;. 4)

All other brackets are zer@f; = by + b + - - - + by is the only Casimir. The Hamiltonian

in this bracket isH, = 1/2tr L2. We also have involution of invariantgH; H;j} =0.The

Lie algebraic interpretation of this bracket can be foundili®]. We denote this bracket

by 1. The quadratic Toda bracket appears in conjunction with isospectral deformations of
Jacobi matrices. First, latbe an eigenvalue df with normalized eigenvectar. Standard
perturbation theory shows that

VA = (2uivo, ..., 2vN_1VUN, v%, cen, v,z\,)T = U*,
whereV denotegdA/day, ..., dr/dby). Some manipulations show thét* satisfies
ﬂzU)” = )»JTlU)“,

wherer; andr; are skew-symmetric matrices. Itturns out thats the matrix of coefficients

of the Poisson tensd#), andr2, whose coefficients are quadratic functions ofdteand

b’'s, can be used to define a new Poisson tensor. The quadratic Toda bracket appeared in a
paper of Adler{1] in 1979. It is a Poisson bracket in which the Hamiltonian vector field
generated by, is the same as the Hamiltonian vector field generateffbwith respect

to themr; bracket. The defining relations are

{ai. aiz1} = Faiaii1, {ai, bi} = —aib;,
{ai, bi+1} = aibit1, {bi, biy1} = 2a?. (5)

All other brackets are zero. This bracket hasidas Casimir and{; = tr L is the Hamil-
tonian. The eigenvalues éfare still in involution. Furthermoregs is compatible withr;.
We also have

m2VH = m1VH 4.

These relations are similar to the Lenard relations for the KdV equation; they are generally
called the Lenard relations.

Finally, we remark that further manipulations with the Lenard relations for the infinite
Toda lattice, followed by setting all but finitely mamy, b; equal to zero, yield another
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Poisson bracketr3, which is cubic in the coordinates (sg€]). The defining relations for
73 are

2 3 2 3
{ai, ait1} = aiaiyabita, {ai, bj} = —a;b; —a {ai, biy1} = aiby, 1 + a;,

i )
{ai, biz2) = aia?y, {aiv1, b} = —alaiv1, {bi, biz1) = 2a?(b; + biy1).  (6)

All other brackets are zero. The bracket is compatible with bothr; and > and the
eigenvalues of. are still in involution. The Casimir for this bracket isftr L.

The multi-Hamiltonian structure of the Toda lattice is well known. The results are usu-
ally presented either in the natui@l, p) coordinates or in the more convenient Flaschka
coordinateqa, b). In the former case the hierarchy of higher invariants are generated by
the use of a recursion operatf@,10]. In the latter case one uses master symmetries as
in [3,4]. We have to point out that chronologically every result obtained so far was done
first in Flaschka coordinatd&, b) and then transferred through the inverse of Flaschka’s
transformation to the origindly, p) coordinates. This is to be expected since it is always
easier to work with sums of polynomials than with sums of exponentials. In this paper we
take the reverse route. We use the recursion operatfay, in) space to define the various
tensorial objects, we then determine the relations which they satisfy, and finally we transfer
the results to the more traditional Flaschka coordinates.

The sequence of Poisson tensors can be extended to form an infinite hierarchy. In order
to produce the hierarchy of Poisson tensors one uses master symmetries. The first three
Poisson brackets are precisely the linear, quadratic and cubic brackets we mentioned above.
If a system is bi-Hamiltonian and one of the brackets is symplectic, one can find a recursion
operator by inverting the symplectic tensor. The recursion operator is then applied to the
initial symplectic bracket to produce an infinite sequence. However, in the case of Toda
lattice (in Flaschka variable@:, b)) both operators are non-invertible and therefore this
method fails. The absence of a recursion operator for the finite Toda lattice is also mentioned
in Morosi and Tond@23] where a Ninjenhuis tensor for the infinite Toda lattice is calculated.
Recursion operators were introduced by O[@8]. Master symmetries were firstintroduced
by Fokas and Fuchssteiner[it3] in connection with the Benjamin—Ono equation. In the
case of Toda equations, the master symmetries map invariant functions to other invariant
functions. Hamiltonian vector fields are also preserved. New Poisson brackets are generated
by using Lie derivatives in the direction of these vector fields and they satisfy interesting
deformation relations. We give a summary of the results:

e There exists a sequence of invariants
Hy, Hy, H3, ...,
whereH; = (1/i)tr L.
e A corresponding sequence of Hamiltonian vector fields
X1 X2, X35+ -+

wherey; = xm;.
e A hierarchy of Poisson tensors

1, 72, T35 - - -

wherer; is polynomial, homogeneous, of degiee
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¢ Finally, one can determine a sequence of master symmetries
X1, X2, X3, .- -,

which are used to create the hierarchies through Lie derivatives.

Note. Actually, in Ref.[3], one finds a construction dfg and X_1, so X; is defined for
i > -1
We quote the results from Ref8,4].

Theorem 1.

i) mj, j = lare all Poisson
ii) The functionsd;, i > 1 are in involution with respect to alt;.
iii) Xi(Hj) =G+ j)Hyj,i > -1,j > 1.
iv) Lx,m; = (J—i —Z)JTH_j,i >-1,j>1.
V) [Xi, X;]=( —DXiyj,i >0, >0.
Vi) m;VH; = m;_1V H;1, wherer; denotes the Poisson matrix of the tensor

To define the vector fieldX,, one considers expressions of the form
L=[B,L]+L" 7)

This equation is similar to a Lax equation, but in this case the eigenvalues satisfy 1
instead of. = 0 (seg4] for details).

Another approach, which explains these relations is adopted in Das and (Buand
Fernandeg§l0]. In principle, their method is general and may work for other finite dimen-
sional systems as well. This approach was also ug@é]iy da Costa and Marle in the case
of the relativistic Toda lattice. The procedure is the following: one defines a second Poisson
bracket in the space of canonical variablgs, ..., gy, p1, ..., py). This gives rise to a
recursion operator. The presence of a conformal symmetry as defined in[@&walows
one, by using the recursion operator, to generate an infinite sequence of master symmetries.
These, in turn, project to the space of the new varialite$) to produce a sequence of
master symmetries in the reduced space. This procedure is describection 3

Section 2is the background material on master symmetries and a result due to Oevel.
Section 3eals with the positive recursion operator for the Toda latti¢e i) coordinates
and the various relations between master symmetries, Poisson tensors and invariants. In
Section 4we define the negative recursion operator and develop similar results both in
(¢, p) and(a, b) coordinatesSection 5contains some additional results and examples. In
Section Bwe comment briefly on possible extensions to other versions of the Toda lattice,
i.e. the periodic, infinite and Bogoyavlensky—Toda lattices.

2. Oevel’stheorem

We assume that the reader is familiar with the concept of Poisson manifold and properties
of the Schouten bracket. See for exam[ile,35,36] Let M be aC* manifold equipped
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with two Poisson tensorg; and J,. The two tensors are called compatible/if+ J> is
Poisson. IfJ; is symplectic, we call the Poisson péif, J>) hon-degenerate. In this case,
the (1, 1)-tensorR defined by

R = JoJ* 8)

is called therecursion operatoassociated with the non-degenerate pair.
A bi-Hamiltonian systenis defined by specifying two Hamiltonian functiong, 2
satisfying

J1Vho = JoVhy,

whereJ;, i = 1, 2, denotes the Poisson matrix of the tengor

The theory of bi-Hamiltonian systems was developed by Md&j. He established the
existence of a hierarchy of mutually commuting functiépsall in involution with respect
to both brackets. They generate mutually commuting bi-Hamiltonian fjgwsatisfying
the Lenard recursion relations. For more details[20¢

We record, for future reference, the Lenard relations which follow from the results of
Magri:

JiVhi = Jj-1Vhiy1. ©)

For further information on bi-Hamiltonian systems relevant to Toda type systems see
[9,14,32,33]

We recall the definition and basic properties of master symmetries. Consider a differential
equation on a manifold/, defined by a vector fielg. We are mostly interested in the case
wherey is a Hamiltonian vector field. A vector field is asymmetnof the equation if

[Z,x]=0.
A vector fieldZ is amaster symmetry

[[Z’ X]’ X] =0,

but
[Z, x] #0.

Remark. This definition is perhaps too general. The class of vector fields which fit this
description is large. One expects a master symmetry to preserve the hierarchy of invariants
and Poisson brackets. This requirement, perhaps, should be part of the definition of master
symmetry.

Suppose that we have a bi-Hamiltonian system defined by the Poisson ténsass
and the Hamiltoniangi, ho. Assume that/; is symplectic and lef; = x. We define the
recursion operatoR = szfl, the higher flows

xi =Rl
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and the higher order Poisson tensors
Ji = Ry
For a non-degenerate bi-Hamiltonian system, master symmetries can be generated using a
method due to OevgP7].
Theorem 2. Suppose thakg is a conformal symmetry for both, J> andhy, i.e. for some
scalarsi, u, andv we have
Lzoh =01,  Lzgha=wpda,  Lzghy = vhy.
Then the vector fields
Zi =R Zg
are master symmetrigthe tensors/; are Poissonand we have

@ Lzhj=W+G =1+ —A)hit;.
(b) LzJj =W+ (G —i—=2(—r)Jitj.
©) [Zi.Zj]= (-1 —DZiyj.

3. Thepositive Toda hierarchy

Let J; be the symplectic brackés) with Poisson matrix

1= —IO’

wherel istheN x N identity matrix. We usg1 = 4.J1. With this convention the brackei
is mapped precisely onto the brackatunder the Flaschka transformati(t). We define
J> to be the tensor

o A B
Jo= ,
-B C

whereA is the skew-symmetric matrix defined by = 1 = —qji fori < j, B the diagonal
matrix (—p1, —p2, ..., —py) andC the skew-symmetric matrix whose non-zero terms
areci 41 = —cip1; = €9t fori = 1,2,..., N — 1. We defineJ, = 2J,. With
this convention the brackdb is mapped precisely onto the bracketunder the Flaschka
transformation. It is easy to see that we have a bi-Hamiltonian pair. We define

h1=—-2(p1+p2+---+ pn)

andh2 to be the Hamiltonian:

N 1 N-1
e 3ot e
i=1 i=1



P.A. Damianou/ Journal of Geometry and Physics 45 (2003) 184-202 191

Under Flaschka's transformati@B), 41 is mapped ontoé, + by +---+by) = 4trL =
4H, andhy is mapped onto 2 t£2 = 4H,. Using the relationship,V H; = 71V H> which
is part (vi) of Theorem Iwe obtain, after multiplication by 4, the following pair:

J1Vhy = JoVhy.
We define the recursion operator as follows:
R=JJ

The matrix form ofR is quite simple:

1({B -A
R=§<C B). (10)

This operator raises degrees and we therefore call ipdiséive Toda operatoin (g, p)
coordinates, the symbg} is a shorthand fogy, . It is generated as usual by

xi =Ry
In a similar fashion we obtain the higher order Poisson tensors
Ji =R .
We finally define the conformal symmetry
N AR
Zo = ;(N—Zz +1)8_q,~ +;p,~8—pi.
It is straightforward to verify that
Lz,1=—J1,  Lz,J2=0.

In fact, Zg is Hamiltonian in theJ, bracket with Hamiltonian function /2 Z,N:l qi (see
[10]). This observation will be generalized $ection 5
In addition

Zo(h1) = ha, Zo(h2) = 2h>.

ConsequentlyZg is a conformal symmetry fas1, J» andij. The constants appearing in
Theorem 2areir = —1, u = 0 andv = 1. According to Oevel's theorem we end up with
the following deformation relations:

[Zi,hj] = G+ Dhitj, Lz Jj=( —i—2Jitj, [Zi.Z)] = (G —D)Ziyj.

Switching to Flaschka coordinates, we obtain relations (iii)—(V)leforem 1
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4. The negative Toda hierarchy

To define the negative Toda hierarchy we use the inverse of the positive recursion operator
R. We define

N=R1t=unst

Obviously we can use the same conformal symmgygy= Ko and takex = 0, u = —1
andv = 2. In other words the role df andu is reversed. We define the vector fields

Ki=N'Ko=N'Zo, i=12 ...,

which are master symmetries. We use the converitign= K; fori = 0,1,2,.... For
exampleY_1 = K1 = NZg= -2 Zf"zl d/dp;. This vector field, in(a, b) coordinates, is
given by
N
X_1=VH=VUiUrL = —_—.
P ob;

This is precisely the same vector field which appearf8jnin that paperX_; was con-
structed through a different method. Similarly, the vector fiégdccorresponds to the Euler
vector field

N-1 9 N 9
Xo = 2 bi—.
0 ;alaai+;labi

Note. We use the symbdt; for a vector field in(q, p) coordinates an&; for the same
vector field in(a, b) coordinates. Similarly, we denote by a Poisson tensor ifp, g)

coordinates and; the corresponding Poisson tensor(in b) coordinates. The indek
ranges over all integers.

We now calculate, using Oevel’s theorem:
Y. Y ] =[Ki.Kj] = =M = DKirj = (DG —DKivj =G — DY (1.
Lettingm = —i andn = —j we obtain the relationship
(Yo, Yl = (n —m)Ypin (11)
for all m, n negative. The same relation holds in Flaschka coordinates. In other words
(X, Xnl=(n —m)Xyyyn Vm,neZ™.

This last relation may be modified to hold for any two arbitrary integers. We suppose,
without loss of generality, that > i and consider the bracket of two master symmetries
K; = Y_; andZ; = Y;, one in the negative hierarchy and the second in the positive
hierarchy, i.e.:

Ki=NiZo=R""Zo
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and
Zj =R/ Zo.
We proceed as in the proof of Oevel's theorem (4€4). First we note that
L7,R = (LzoJ2) It — Jod7 7007 = (w — MR
On the other hand
LzoN=Lz,(J1I;H = (L — N
Finally
[Y-i.Y)] =[Ki. Z;] = [N Zo, R Zo] = N L2o(R") Zo = R L2,(N') Zo
=N'ju—NR/' Zg—RIi(h — WIN' Zg
=jn =R Zo—i(h — R Zo
=G+ D —WRZo= G + )= MY,
In the case of Toda lattice = 0 andA = —1, therefore
[Yoi, Y] = G+ )Y

We deduce thatl1) holds for any integer value of the index.
We defineW; = J3_;. This is hecessary since the conclusions of Oevel’'s theorem assume
that the index begins at= 1 and is positive. We compute

Ly J-j =Lk Wjrz=@+(G+3-2—-)(—2)Witj+3
=0 —j—2DWirjr3=0—Jj—2J(i+))-
Lettingm = —i andn = —j we obtain
Ly,Jy =0 —m— 2)Juym

for n, m negative integers. Switching to Flaschka coordinates we deduce that the relation
(iv) of Theorem 1holds also for negative values of the index. In other words

Lxmj=(j—i—2my;, i<0, j=<O0.

Again, a straightforward modification of the proof of Oevel's theorem shows that the last
relationship holds for any integer valuerafn. We have shown that conclusions (iv) and (v)

of Theorem lhold for integer values of the index. In fact, it is not difficult to demonstrate
all the other parts ofheorem 1

Theorem 3. The conclusions dfheorem 1hold for any integer value of the index
Proof. We need to prove parts (i)—(iii) and (vi) of the theorem (not necessarily in that order).

() The fact that/,, are Poisson for € Z follows from properties of the recursion operator
and it is also part of Oevel's theorem. The similar resultinb) coordinates follows easily
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from properties of the Schouten bracket, and the factthandr, are F-related. We have
7w, = F.J,, therefore

[7n, wn] = [Fu(Jn), Fx(Jp)] = FilJn. Ju] = Fi(0) = 0.

The vanishing of the Schouten bracket is equivalent to the Poisson property. (iii) The case
wherei and; are both of the same sign was already proved. We next not& tfiaj = A" *1

if A is an eigenvalue af. This follows fromEq. (7)which is used to define the vector fields

X, for n > 0. We would like to extend the formul&, () = A"*1 for n < 0. Since
X_1(1) = 1 we consideX _». We look at the equation

[X_2, Xu] = (n + 2)Xp—2.

We act o with both sides of the equation and kt (1) = f(1). We obtain the equation
(n+DAfA) — fOA% = (n +2).

This is a linear first-order ordinary differential equation with general solution

1
foy ==+ o iany

Sincen is arbitrary, we obtairy'(A) = 1/A. In order to calculat&l_3(1) we use
X 3=—[X_1,X2]

We obtain
1
X_3(0) =X_2X_1(0) — X_1X_2(0) = —X_1 <_> = .

The result follows by induction.
Finally we calculate

1 . 1 :
Xi(Hj) = 2Xi (>-x) = 5 (> xind)
=307 X0w = YT =3 0 = G+ ) Hisy.

(vi) Firstwe note that ; VH; = m;_1V H; 1, holdsfori, j of the same sign. More generally,
in the positive (or the negative) hierarchy we have the Lenard relations for the eigenvalues,
ie.:

VA = A1 VA;. (12)

Assume now that < 0, j > 0. The calculation is straightforward:
1 i i-1 ! 1 i+1
V= Dore=) MTtwiVa =) M Vi = 7V Y ans
Therefore

nijVH; =7mj 1VHj]. (13)
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Inthe caseé > 0and;j < 0we use exactly the same calculation but({@)for the negative
hierarchy.

(ii) It is clearly enough to show the involution of the eigenvalued aiinceH; are func-
tions of the eigenvalues. We prove involution of eigenvalues by using the Lenard relations
(13). We give the proof for the case of the bracketwith j > 0 butif j < 0 the proof is
identical. First we show that the eigenvalues are in involution with respect to the bracket
Let » andu be two distinct eigenvalues and gt V be the gradients of andu, respec-
tively. We use the notatiofy } to denote the bracket; and(, ) the standard inner product.
The Lenard relationgl2) translate intoroU = AU andnaV = umrq V. Therefore

1 1 1
out = {mU. V) = £(mU. V) = ——{U.m2V) = — (U, umV)

iz iz 2
= —— U’ V = — U,V Z—)\., .
/\< mV) X(711 ) k{ n}

Therefore{A, u} = 0. To show the involution with respect to all brackets and in view
of part (iv) of Theorem 1it is enough to show the following. L&k, f> be two functions in
involution with respect to the Poisson bracketet X be a vector field such that( f;) = fl.2
fori = 1, 2. Define a Poisson bracketby w = Lx . Then the functiongi, f> remainin
involution with respect to the bracket. The proof follows trivially if we writew = Ly
in Poisson form:

{f1, f2lw = X{f1, fobr —{f1, X (S} —{X(fD), fo)n. O
Remark. We should point out that
1
H,=—-trL"
n

makes sense far £ 0 butitis undefined fot = 0. The reader should interpret the formulas
involving Hy as a degenerate case, i = tr L°/0 = N/0 = oo. Therefore, the result of
X_,(H,) = N whereN is the size ofL. It makes sense to define

1
X (Ho) = lim =X, (tr L™).
n—0n
For example X_1(Hop) is calculated byX _1((1/n)tr L") = tr L"~1. Taking the limit as

n — 0 givesX_1(Hp) = tr L~ = —H_1 which is the correct answer.

5. Further resultsand examples

In this last section we prove some further results and give some specific examples. In
Section 3wve noticed thaZg is Hamiltonian with respect to th® bracket with Hamiltonian
function f = 1/2 Zf’:l gi. This observation is due to Fernand&8]. We generalize the
result as follows.

Theorem 4. The master symmet#y;, n € Z isthe Hamiltonian vector field of f with respect
to the J, 2 bracket



196 P.A. Damianou/ Journal of Geometry and Physics 45 (2003) 184-202

Proof. We will prove the result for the positive hierarct;, = Y, but the proof for
Y_, = K, is similar. As a first step we show that

Z(f)=0 ¥n>0.

We recall that

al AR
Zo= N-2i+1)— i—.
0 ;( i+ )aqi+;plapi

Since

N
> (N+1-2i)=0,
i=1

we obtain

1 (& 1 (&
Zo(f) = 570 (Z q,-> =5 (Z ZO<ql->) =0.
i=1 i=1

By examining the form(10) of the recursion operatoR we deduce easily that thg
component oz is

1
Zi(g) =~5 | (N =21+ Dpi+ ) pj =) pj

2 — —
Jj>i j<i
In other words, the vector
(Z1(q1), ..., Z1(gn))
is the producAP where
Zo(q1) 1 1 1
-1 Zo(g2) 1
1 -1 -1 Z
a1 0(g3)
2
: 1
-1 oo =1 Zo(gw)
and P the column vectol(p1, pz, ..., py)'. Note that} Y ; aj = 0 and Z;-v:laij =

—Zo(g;). Therefore

1 1 1
Zl(f)=E(Zl(CI1)+-~+Zl(61N))=§ E a@pj =3 E (E aiJ>Pj =0.
i,j i

J
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In the same fashion one proves tiai /) = 0. Forn > 2, we proceed by induction:
1
Zyn=——|721,Z,-1].
p— 2[ 1 1]
Therefore
1 1
Zn(f) = —=l21, Znal = —5(Z1Zpaf — Zy-1Z1f) =0
n—2 n—2

by the induction hypothesis.
To complete the proof of the theorem, it is enough to show

Z, = [Jn+2a f],

where [ ] denotes the Schouten bracket ($&epp. 5514-5515]
First we note that

([Jn+1, f1. Za + (L fs Za], Jnta] + [ 21, Jusals f1=0

due to the super Jacobi identity for the Schouten bracket. Since

[Z1, f1=Z1(f) =0,

the middle term in the last identity is zero. We obtain

[Z1, [Jn+1, f1] = [[Z1, Jn4al, £]

Finally, we calculate using induction:
1 1 1
Zn = _[le Zn—l] = _[le [Jn+la f]] = _[[Zlv JI‘L+1]: f]
n—2 n—2 n—2

1
([(l’l - Z)Jn+27 f]) = [Jn+29 f] U
n—2

The result of the theorem is striking. It shows that the master symmetries are determined
once the Poisson hierarchy is constructed. Of course one requires knowledge of the func-
tion f. The functionf may be constructed by using Noether’s theorem: one of the point
symmetries of the Toda lattice (Sf& p. 227) is given by

< e
(> —) .
io 04
A corresponding time dependent integral produced from Noether’s theorem is
N N
1 1 1
I== i — =1 ;= ~th;.
2;‘]1 > ;Pz [+ 2 1

Motivated by the results 46,31], it makes sense to consider the time independent part of
which is precisely the functiogf. It is an interesting question whether this procedure works
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for other integrable systems as well. We also remark that the integrals are also determined
from the knowledge of the Poisson brackets and the functioRor example, it follows
easily fromTheorem 4hat

1
Bivn = —— 1}
i+1 i+1{ i f13,

wheref{, }3 denotes the cubic Toda bracket.

The rational brackets iy, p) coordinates are given by complicated expressions that are
quite hard to write in explicit form. When projected in the spac@:ob) variables they give
rational brackets whose numerator is polynomial and the denominator is the determinant of
the Jacobi matrix. We give examples of these brackets and master symmeties-f8r

For example, the tensop is a homogeneous rational bracket of degree 0. It is defined

by
Jo =N = JuJ; .

In the case of three particles the corresponding braekét given as follows: first define
the skew-symmetric matrid by

1 2 2
aip = —ja1a2(bz + b1 — b2), aiz=ai(a; —babz), a1a= —ai(a; — bibs),
2 2 2
ais = aiaj, a3 = —ajaz, azq = az(aj — bibs),
2 2 2
azs = —az(ay — biby), azs = —2aibs, azs =0, ass = —2as5by.

The matrix of the tensatg is defined by

1

=—A 14
detr (14)

o
where def. = b1bob3 — a%bl - a%bg. This formula defines a Poisson bracket with one
single CasimitH, = 1/2tr L. The bracket is defined on the open dense set gé. The
explicit formulas for the vector field¥1 and X, are given if4]; therefore, we will give an
example for the vector fiel® _». In the caseV = 3 itis given by

1 (& 0 S )
X o= —— 9 )
2= detL (Zr’aai+gs'abi)

i=1

where
_ 1 _1 _ 2 2
r1 = 3a1(b1 — bz — 2b3), r2 = 5a2(bz — 2b1 — by), 51 = bab3 — aj — a3,
s2 = b1bz + a% + a%, s3 = b1by — a% — a%.

We close by considering the Casimirs of these new Poisson brackets.

Theorem 5. The Casimir ofr, in the open dense sdetL # Qistr LZ" for all n # 2.
The Casimir ofr, is detL.
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Proof. Forn > 1 the result was proved i@, Proposition 5, p. 5525]Therefore, we only
have to show that the Casimir af_,, is tr L2 (m > 0). This follows from(9) and the
fact thatH1 = tr L is the Casimir for the Lie—Poisson brackat

6. Extensionsto other versionsof the Toda lattice

In this paper we have studied the negative hierarchy for the finite nonperiodic Toda lattice.
We would like to close with some remarks on the other versions of the Toda lattice, i.e.
the periodic Toda, the infinite Toda with boundary conditions and the Bogoyavlensky—Toda
lattice, corresponding to simple Lie groups.

The results may be extended to the case of the periodic Toda lattice. We have to stress
that again there is no recursion operator in Flaschka varidblds; one has to work in
natural(p, ¢) coordinates and then project. Here are the main differences from the finite
nonperiodic Toda lattice. The Hamiltonian now becomes

N g N
ho= 3 ot e
i=1 i=1
Note that we have added an additional term
@IN—4N+1 — gIN—41

and we assume periodic conditiopg; = ¢; andpy+; = p;. The tensot/; is the same
as inSection 3but J> has to be modified. The matrik should be replaced with

~ A B
Jo= ,

whereA andB are the same as before, liuts the skew-symmetric matrix whose non-zero
terms arec; j41 = —cit1; = €i~%+1fori = 1,2,...,N —1landciy = —cy1 =
—en—41, We defineR and.\ as before:

R=1DJY N=aJn

We obtain similar results as in the nonperiodic Toda lattice and these in turn project into the
space of(a, b) variables. Flaschka’s transformation is given by the same formula but with
one extra variable

ay = %9(1/2)(111\/ —q1)

The Lax pair with a spectral parameter can be foun{Ri@2] where the periodic Toda
lattice is studied in detail. The matrix is given by
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1
b o ... ... =
1 a1 )\aN
air by a ;
L — 0 ax b3
an-1
)\’aN anN_1 bN

The linear and quadratic brackdty and (5)are given by the same formula but we take
into account the periodicity. For example,zi

lan, b1} = {ay, by+1) = an.

These two tensors are just the beginning of a double hierarchy of Poisson tensors. We have
also master symmetries and invariants. We remark that the Poisson tgnsow has an
additional CasimilC = aiay, ..., ay.

We give an example of one such rational bracketNoe 3. We will explicitly compute
the formula forrg as we did in the case of the nonperiodic Toda.

First, define the matrixd in block form:

A A
A — ll 2 ,
—A;  As,

where
0 —Zaiaz(bs+ b1 — bp) 3aias(bz + b1 — b2)
A1 = | 3aiaz(bs+ b1 — b2) 0 —Lazas(bz + b1 — b2) |,
—3aiaz(bs + by — by) 3azaz(bz + by — b) 0
ai(a5 — a3 — bob3) —ai(as — a3 — bib3) ai(as — a3)
Ay = —az(a% - a%) az(a% - a% — b1b3) —az(a% - a% — b1b))
a\g(af — a% + bob3) —ag(a% — a%) ag(af — a% — b1by)
and
0 —Za%bg 2a§b2
Az=| 2a%b3 0  —2a3h
—2a3b,  2a3b: 0

The matrix of the tensatg is defined by

1a
0= —A,
0= 4
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whered = bibsbs — a3by — aZbs + a3by. This formula defines a Poisson bracket with
two CasimirsH, = 1/2tr L2 andC = ajasas. It is no surprise that settings = 0 gives
precisely formulg14) of the nonperiodic case.

Similar results hold in the case of the infinite Toda lattice with boundary conditions. In
fact, the only reference we were able to find in the literature on the subject of negative
hierarchies concerns this particular case of the relativistic Toda lattice{Z8e29] for
explicit calculations).

Finally, we would like to mention an important application of these results in the case of
the generalized Toda lattices of Bogoyavlensky. In fact, the work of this paper has originated
from an effort to find a bi-Hamiltonian formulation of these systems. For example, in the
case of the Bogoyavlensky—Toda lattice of typethere exists a recursion operator which
gives rise to an infinite hierarchy

1, T3, TS, - ..
of polynomial brackets of odd degree. The Lenard relations begin at the second flow, i.e.:
3V Hy = w1V Hy.

Using the rational bracket_; we can establish for the first time the bi-Hamiltonian nature
of this system, i.e.:

m1VHy = m_1V Hy.

We will report on this development in the future (§&gfor some preliminary work).
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